Anterior Hox Genes Interact with Components of the Neural Crest Specification Network to Induce Neural Crest Fates
نویسندگان
چکیده
Hox genes play a central role in neural crest (NC) patterning particularly in the cranial region of the body. Despite evidence that simultaneous loss of Hoxa1 and Hoxb1 function resulted in NC specification defects, the role of Hox genes in NC specification has remained unclear due to extended genetic redundancy among Hox genes. To circumvent this problem, we expressed anterior Hox genes in the trunk neural tube of the developing chick embryo. This demonstrated that anterior Hox genes play a central role in NC cell specification by rapidly inducing the key transcription factors Snail2 and Msx1/2 and a neural progenitor to NC cell fate switch characterized by cell adhesion changes and an epithelial-to-mesenchymal transition (EMT). Cells delaminated from dorsal and medial neural tube levels and generated ectopic neurons, glia progenitors, and melanocytes. The mobilization of the NC genetic cascade was dependent upon bone morphogenetic protein signaling and optimal levels of Notch signaling. Therefore, anterior Hox patterning genes participate in NC specification and EMT by interacting with NC-inducing signaling pathways and regulating the expression of key genes involved in these processes.
منابع مشابه
Hoxb1 neural crest preferentially form glia of the PNS.
The vertebrate cranial neural crest cells give rise to many complex derivatives of the head, neck, and face, including neuronal and glial cells that act in concert for proper development of the anterior-peripheral nervous system. Several genes have been implicated in the processes of neural crest specification, migration, and differentiation; among these are the hox gene clusters. To determine ...
متن کاملDetermination of the identity of the derivatives of the cephalic neural crest: incompatibility between Hox gene expression and lower jaw development.
In addition to pigment cells, and neural and endocrine derivatives, the neural crest is characterized by its ability to yield mesenchymal cells. In amniotes, this property is restricted to the cephalic region from the mid-diencephalon to the end of rhombomere 8 (level of somites 4/5). The cephalic neural crest is divided into two domains: an anterior region corresponding to the diencephalon, me...
متن کاملPatterning the vertebrate head: murine Hox 2 genes mark distinct subpopulations of premigratory and migrating cranial neural crest.
The structures of the face in vertebrates are largely derived from neural crest. There is some evidence to suggest that the form of the facial pattern is determined by the crest, and that it is specified before migration as to the structures that is is able to form. The neural crest is able to control the form of surrounding, non-neural crest tissues by an instructive interaction. Some of this ...
متن کاملContribution of Hox genes to the diversity of the hindbrain sensory system.
The perception of environmental stimuli is mediated through a diverse group of first-order sensory relay interneurons located in stereotypic positions along the dorsoventral (DV) axis of the neural tube. These interneurons form contiguous columns along the anteroposterior (AP) axis. Like neural crest cells and motoneurons, first-order sensory relay interneurons also require specification along ...
متن کاملIdentification of novel Hoxa1 downstream targets regulating hindbrain, neural crest and inner ear development.
Hox genes play a crucial role during embryonic patterning and organogenesis. Of the 39 Hox genes, Hoxa1 is the first to be expressed during embryogenesis and the only anterior Hox gene linked to a human syndrome. Hoxa1 is necessary for the proper development of the brainstem, inner ear and heart in humans and mice; however, almost nothing is known about the molecular downstream targets through ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 29 شماره
صفحات -
تاریخ انتشار 2011